3.2651 \(\int \frac{\sqrt{1-2 x} \sqrt{3+5 x}}{(2+3 x)^{7/2}} \, dx\)

Optimal. Leaf size=160 \[ -\frac{124 \sqrt{\frac{11}{3}} \text{EllipticF}\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right ),\frac{35}{33}\right )}{2205}+\frac{4636 \sqrt{1-2 x} \sqrt{5 x+3}}{2205 \sqrt{3 x+2}}+\frac{74 \sqrt{1-2 x} \sqrt{5 x+3}}{315 (3 x+2)^{3/2}}-\frac{2 \sqrt{1-2 x} \sqrt{5 x+3}}{15 (3 x+2)^{5/2}}-\frac{4636 \sqrt{\frac{11}{3}} E\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right )}{2205} \]

[Out]

(-2*Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/(15*(2 + 3*x)^(5/2)) + (74*Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/(315*(2 + 3*x)^(3/2))
 + (4636*Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/(2205*Sqrt[2 + 3*x]) - (4636*Sqrt[11/3]*EllipticE[ArcSin[Sqrt[3/7]*Sqrt[
1 - 2*x]], 35/33])/2205 - (124*Sqrt[11/3]*EllipticF[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]], 35/33])/2205

________________________________________________________________________________________

Rubi [A]  time = 0.0508296, antiderivative size = 160, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.179, Rules used = {97, 152, 158, 113, 119} \[ \frac{4636 \sqrt{1-2 x} \sqrt{5 x+3}}{2205 \sqrt{3 x+2}}+\frac{74 \sqrt{1-2 x} \sqrt{5 x+3}}{315 (3 x+2)^{3/2}}-\frac{2 \sqrt{1-2 x} \sqrt{5 x+3}}{15 (3 x+2)^{5/2}}-\frac{124 \sqrt{\frac{11}{3}} F\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right )}{2205}-\frac{4636 \sqrt{\frac{11}{3}} E\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right )}{2205} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/(2 + 3*x)^(7/2),x]

[Out]

(-2*Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/(15*(2 + 3*x)^(5/2)) + (74*Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/(315*(2 + 3*x)^(3/2))
 + (4636*Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/(2205*Sqrt[2 + 3*x]) - (4636*Sqrt[11/3]*EllipticE[ArcSin[Sqrt[3/7]*Sqrt[
1 - 2*x]], 35/33])/2205 - (124*Sqrt[11/3]*EllipticF[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]], 35/33])/2205

Rule 97

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a + b
*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p)/(b*(m + 1)), x] - Dist[1/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n
- 1)*(e + f*x)^(p - 1)*Simp[d*e*n + c*f*p + d*f*(n + p)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && LtQ[m
, -1] && GtQ[n, 0] && GtQ[p, 0] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p] || IntegersQ[p, m + n])

Rule 152

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*
f)), x] + Dist[1/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*
g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p
+ 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && LtQ[m, -1] && IntegersQ[2*m, 2*n, 2*p]

Rule 158

Int[((g_.) + (h_.)*(x_))/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol]
 :> Dist[h/f, Int[Sqrt[e + f*x]/(Sqrt[a + b*x]*Sqrt[c + d*x]), x], x] + Dist[(f*g - e*h)/f, Int[1/(Sqrt[a + b*
x]*Sqrt[c + d*x]*Sqrt[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && SimplerQ[a + b*x, e + f*x] &&
 SimplerQ[c + d*x, e + f*x]

Rule 113

Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[(2*Rt[-((b*e
 - a*f)/d), 2]*EllipticE[ArcSin[Sqrt[a + b*x]/Rt[-((b*c - a*d)/d), 2]], (f*(b*c - a*d))/(d*(b*e - a*f))])/b, x
] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !LtQ[-((b*c - a*d)/d),
 0] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[-(d/(b*c - a*d)), 0] && GtQ[d/(d*e - c*f), 0] &&  !LtQ[(b*c - a*d)
/b, 0])

Rule 119

Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Simp[(2*Rt[-(b/d
), 2]*EllipticF[ArcSin[Sqrt[a + b*x]/(Rt[-(b/d), 2]*Sqrt[(b*c - a*d)/b])], (f*(b*c - a*d))/(d*(b*e - a*f))])/(
b*Sqrt[(b*e - a*f)/b]), x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[(b*c - a*d)/b, 0] && GtQ[(b*e - a*f)/b, 0] &
& PosQ[-(b/d)] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(d*e - c*f)/d, 0] && GtQ[-(d/b), 0]) &&  !(SimplerQ[c +
 d*x, a + b*x] && GtQ[(-(b*e) + a*f)/f, 0] && GtQ[-(f/b), 0]) &&  !(SimplerQ[e + f*x, a + b*x] && GtQ[(-(d*e)
+ c*f)/f, 0] && GtQ[(-(b*e) + a*f)/f, 0] && (PosQ[-(f/d)] || PosQ[-(f/b)]))

Rubi steps

\begin{align*} \int \frac{\sqrt{1-2 x} \sqrt{3+5 x}}{(2+3 x)^{7/2}} \, dx &=-\frac{2 \sqrt{1-2 x} \sqrt{3+5 x}}{15 (2+3 x)^{5/2}}+\frac{2}{15} \int \frac{-\frac{1}{2}-10 x}{\sqrt{1-2 x} (2+3 x)^{5/2} \sqrt{3+5 x}} \, dx\\ &=-\frac{2 \sqrt{1-2 x} \sqrt{3+5 x}}{15 (2+3 x)^{5/2}}+\frac{74 \sqrt{1-2 x} \sqrt{3+5 x}}{315 (2+3 x)^{3/2}}+\frac{4}{315} \int \frac{\frac{263}{2}-\frac{185 x}{2}}{\sqrt{1-2 x} (2+3 x)^{3/2} \sqrt{3+5 x}} \, dx\\ &=-\frac{2 \sqrt{1-2 x} \sqrt{3+5 x}}{15 (2+3 x)^{5/2}}+\frac{74 \sqrt{1-2 x} \sqrt{3+5 x}}{315 (2+3 x)^{3/2}}+\frac{4636 \sqrt{1-2 x} \sqrt{3+5 x}}{2205 \sqrt{2+3 x}}+\frac{8 \int \frac{\frac{7295}{4}+\frac{5795 x}{2}}{\sqrt{1-2 x} \sqrt{2+3 x} \sqrt{3+5 x}} \, dx}{2205}\\ &=-\frac{2 \sqrt{1-2 x} \sqrt{3+5 x}}{15 (2+3 x)^{5/2}}+\frac{74 \sqrt{1-2 x} \sqrt{3+5 x}}{315 (2+3 x)^{3/2}}+\frac{4636 \sqrt{1-2 x} \sqrt{3+5 x}}{2205 \sqrt{2+3 x}}+\frac{682 \int \frac{1}{\sqrt{1-2 x} \sqrt{2+3 x} \sqrt{3+5 x}} \, dx}{2205}+\frac{4636 \int \frac{\sqrt{3+5 x}}{\sqrt{1-2 x} \sqrt{2+3 x}} \, dx}{2205}\\ &=-\frac{2 \sqrt{1-2 x} \sqrt{3+5 x}}{15 (2+3 x)^{5/2}}+\frac{74 \sqrt{1-2 x} \sqrt{3+5 x}}{315 (2+3 x)^{3/2}}+\frac{4636 \sqrt{1-2 x} \sqrt{3+5 x}}{2205 \sqrt{2+3 x}}-\frac{4636 \sqrt{\frac{11}{3}} E\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right )}{2205}-\frac{124 \sqrt{\frac{11}{3}} F\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right )}{2205}\\ \end{align*}

Mathematica [A]  time = 0.22873, size = 99, normalized size = 0.62 \[ \frac{2 \left (\sqrt{2} \left (2318 E\left (\sin ^{-1}\left (\sqrt{\frac{2}{11}} \sqrt{5 x+3}\right )|-\frac{33}{2}\right )-1295 \text{EllipticF}\left (\sin ^{-1}\left (\sqrt{\frac{2}{11}} \sqrt{5 x+3}\right ),-\frac{33}{2}\right )\right )+\frac{3 \sqrt{1-2 x} \sqrt{5 x+3} \left (20862 x^2+28593 x+9643\right )}{(3 x+2)^{5/2}}\right )}{6615} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/(2 + 3*x)^(7/2),x]

[Out]

(2*((3*Sqrt[1 - 2*x]*Sqrt[3 + 5*x]*(9643 + 28593*x + 20862*x^2))/(2 + 3*x)^(5/2) + Sqrt[2]*(2318*EllipticE[Arc
Sin[Sqrt[2/11]*Sqrt[3 + 5*x]], -33/2] - 1295*EllipticF[ArcSin[Sqrt[2/11]*Sqrt[3 + 5*x]], -33/2])))/6615

________________________________________________________________________________________

Maple [C]  time = 0.03, size = 314, normalized size = 2. \begin{align*}{\frac{2}{66150\,{x}^{2}+6615\,x-19845} \left ( 11655\,\sqrt{2}{\it EllipticF} \left ( 1/11\,\sqrt{66+110\,x},i/2\sqrt{66} \right ){x}^{2}\sqrt{3+5\,x}\sqrt{2+3\,x}\sqrt{1-2\,x}-20862\,\sqrt{2}{\it EllipticE} \left ( 1/11\,\sqrt{66+110\,x},i/2\sqrt{66} \right ){x}^{2}\sqrt{3+5\,x}\sqrt{2+3\,x}\sqrt{1-2\,x}+15540\,\sqrt{2}{\it EllipticF} \left ( 1/11\,\sqrt{66+110\,x},i/2\sqrt{66} \right ) x\sqrt{3+5\,x}\sqrt{2+3\,x}\sqrt{1-2\,x}-27816\,\sqrt{2}{\it EllipticE} \left ( 1/11\,\sqrt{66+110\,x},i/2\sqrt{66} \right ) x\sqrt{3+5\,x}\sqrt{2+3\,x}\sqrt{1-2\,x}+5180\,\sqrt{2}\sqrt{3+5\,x}\sqrt{2+3\,x}\sqrt{1-2\,x}{\it EllipticF} \left ( 1/11\,\sqrt{66+110\,x},i/2\sqrt{66} \right ) -9272\,\sqrt{2}\sqrt{3+5\,x}\sqrt{2+3\,x}\sqrt{1-2\,x}{\it EllipticE} \left ( 1/11\,\sqrt{66+110\,x},i/2\sqrt{66} \right ) +625860\,{x}^{4}+920376\,{x}^{3}+187311\,{x}^{2}-228408\,x-86787 \right ) \sqrt{1-2\,x}\sqrt{3+5\,x} \left ( 2+3\,x \right ) ^{-{\frac{5}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1-2*x)^(1/2)*(3+5*x)^(1/2)/(2+3*x)^(7/2),x)

[Out]

2/6615*(11655*2^(1/2)*EllipticF(1/11*(66+110*x)^(1/2),1/2*I*66^(1/2))*x^2*(3+5*x)^(1/2)*(2+3*x)^(1/2)*(1-2*x)^
(1/2)-20862*2^(1/2)*EllipticE(1/11*(66+110*x)^(1/2),1/2*I*66^(1/2))*x^2*(3+5*x)^(1/2)*(2+3*x)^(1/2)*(1-2*x)^(1
/2)+15540*2^(1/2)*EllipticF(1/11*(66+110*x)^(1/2),1/2*I*66^(1/2))*x*(3+5*x)^(1/2)*(2+3*x)^(1/2)*(1-2*x)^(1/2)-
27816*2^(1/2)*EllipticE(1/11*(66+110*x)^(1/2),1/2*I*66^(1/2))*x*(3+5*x)^(1/2)*(2+3*x)^(1/2)*(1-2*x)^(1/2)+5180
*2^(1/2)*(3+5*x)^(1/2)*(2+3*x)^(1/2)*(1-2*x)^(1/2)*EllipticF(1/11*(66+110*x)^(1/2),1/2*I*66^(1/2))-9272*2^(1/2
)*(3+5*x)^(1/2)*(2+3*x)^(1/2)*(1-2*x)^(1/2)*EllipticE(1/11*(66+110*x)^(1/2),1/2*I*66^(1/2))+625860*x^4+920376*
x^3+187311*x^2-228408*x-86787)*(1-2*x)^(1/2)*(3+5*x)^(1/2)/(10*x^2+x-3)/(2+3*x)^(5/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{5 \, x + 3} \sqrt{-2 \, x + 1}}{{\left (3 \, x + 2\right )}^{\frac{7}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(1/2)*(3+5*x)^(1/2)/(2+3*x)^(7/2),x, algorithm="maxima")

[Out]

integrate(sqrt(5*x + 3)*sqrt(-2*x + 1)/(3*x + 2)^(7/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{5 \, x + 3} \sqrt{3 \, x + 2} \sqrt{-2 \, x + 1}}{81 \, x^{4} + 216 \, x^{3} + 216 \, x^{2} + 96 \, x + 16}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(1/2)*(3+5*x)^(1/2)/(2+3*x)^(7/2),x, algorithm="fricas")

[Out]

integral(sqrt(5*x + 3)*sqrt(3*x + 2)*sqrt(-2*x + 1)/(81*x^4 + 216*x^3 + 216*x^2 + 96*x + 16), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)**(1/2)*(3+5*x)**(1/2)/(2+3*x)**(7/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{5 \, x + 3} \sqrt{-2 \, x + 1}}{{\left (3 \, x + 2\right )}^{\frac{7}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(1/2)*(3+5*x)^(1/2)/(2+3*x)^(7/2),x, algorithm="giac")

[Out]

integrate(sqrt(5*x + 3)*sqrt(-2*x + 1)/(3*x + 2)^(7/2), x)